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ABSTRACT: Computational models are perceived as an
attractive alternative to mathematical models (e.g., ordinary
differential equations). These models incorporate a set of
methods for specifying, modeling, testing, and simulating
biological systems. In addition, they can be analyzed using
algorithmic techniques (e.g., formal verif ication). This paper
shows how formal verification is utilized in systems and
synthetic biology through qualitative vs quantitative analysis.
Here, we choose two well-known case studies: quorum sensing
in P. aeruginosas and pulse generator. The paper reports
verification analysis of two systems carried out using some
model checking tools, integrated to the Infobiotics Workbench platform, where system models are based on stochastic P systems.

Advances in our understanding of chemical and biological
complexity are posed to open up a new frontier in computing
science. Indeed, what we like to call “algorithmic living matter”
will lead to a new Bio-ICT revolution based on the ability to
program all kinds of materials in all kinds of environments at all
scales, with engineered biological cells as the primary
workhorse of this brewing revolution. We are still, however,
far away from the holy grail of algorithmic living matter. This is
so because, notwithstanding tremendous progress in synthetic
biology, we still lack the tools, both biotechnological and
computational, that are required to deliver highly calibrated and
standardized bioparts and devices that could be pluged-and-
played seamlessly, scalably, and dependably.
In software engineering, the concept of dependability1,2

includes such properties as reliability, robustness, and safety of
software systems. In this paper, we are concerned with
dependability and, in particular, dependability of biomodels.
Model checking3 is at the cornerstone of software depend-

ability. Model checking is a computational technique
exhaustively checking that a system satisfies certain require-
ments. All extant tools for model checking require as a starting
point a formal definition of “the system” that will be analyzed
and queried. The method has been extensively used in the
verification of various systems. Recently, it has been also
applied to formal analysis of biomodels (e.g., ERK/MAPK
pathway4). In order to initiate a wider exploration of these
concepts within the synthetic biology community, we focus on
state-of-art model checking tools and explore their potential
and limitations for synthetic biology.
We have shown in ref 5 that stochastic P systems6 are an

amenable formalism to capture a biomodel, as it is both

intuitive (as it follows a rule-base modeling philosophy) and
well structured. The later is important as it allows us to
automatically translate a biomodel specification written in
stochastic P systems to a model checking domain specific
language (DSL) in a rather straightforward manner.
In this paper, we take that approach; namely, we specify two

well-known biological systems, one arising from systems
biology (P. aeruginosas quorum sensing) and one from
synthetic biology (pulse generator). We use the Infobiotics
Workbench tool,7 which is based on stochastic P systems, to
model the systems and formally analyze them using some
model checkers integrated into the workbench. We show how
formal verification is utilized in systems and synthetic biology
by interplaying qualitative vs quantitative analysis. We also
address scalability issues using two case studies.
The paper is organized as follows: We will first provide an

overview of Infobiotics Workbench and stochastic P systems.
This is followed by a brief description of model checking. After
describing the quorum sensing and pulse generator systems, we
will discuss the model checking experiments carried out and
analyze the results. We will finally draw conclusions and suggest
areas of future work.

■ INFOBIOTICS WORKBENCH

The Infobiotics Workbench (Ibw) tool8 permits rapid
biomodel prototyping and specification, simulation, verification,
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analysis, and optimization. This is an integrated software suite
consisting of individual components responsible for various
functions. These are executed from the Infobiotics Dashboard,
which also helps visualizing results in time and space.7

In Ibw, system models are constructed using a rule-based
specification language, called stochastic P systems. Stochastic P
systems are utilized to specify (multi)cellular systems and
molecular interactions taking place in different locations of the
living cells or across cells within a population. With these
models there is a clear mapping of different locations of
biological systems into “compartments” delimited by mem-
branes that have a formal representation within the stochastic P
system language. Each molecular species is associated with an
object in the multiset corresponding to a membrane mapping
the region or compartment where the molecule is located.
Depending on the complexity of these species, various object
types are utilized, including simple symbols or strings. Strings
are also utilized to represent the genetic information encoded
by macromolecules such as RNA, DNA, proteins, etc. Different
simple molecular interactions or more complex gene
expression, compartment translocation, as well as cell division
and death are specified using object and string rewriting or
communication, and compartment division or dissolution.
These rules deal with multisets of objects rather than objects.
Many P systems use these features in building a model. In the

case of a stochastic P systems, constants, called kinetic constants,
are associated with rules in order to compute their probabilities
and time needed to be applied, according to Gillespie
algorithm.9 This approach is based on a Monte Carlo algorithm
for stochastic simulation of molecular interactions taking place
inside a single volume or across multiple compartments.
Stochastic P systems representing models of individual living
cells can be associated with different geometries or topologies
for modeling multicellular systems with their interactions. One
such geometry is a grid of cells that can be represented by a
lattice, and inside each component of it resides a membrane
with stochastic behavior. In this case, the communication is
only among neighbors. In our examples, we will use stochastic
P systems containing only simple objects, unicellular or
multicellular structures. In the pulse generator system, we
also use a lattice to represent the geometry.
Related Work. We have shown10 that stochastic P systems

can be linked not only to stochastic algorithms but also to
coarsed grained molecular simulations (e.g., Dissipative Particle
Dynamics) in order to model chemical processes taking place
inside chemical miscelles and vesicles. In ref 5, we have shown
how this biolanguage can be used to specify increasingly
complex models by reuse of rules’ “modules” capturing key
biological processes such as transcription regulation, enhanced
degradation rates due to addition of degradation tag fusions to
gene products, riboswitch controls, etc. Furthermore, due to its
well structured syntax and clear semantics, it is possible to apply
in silico directed evolution over the specifications in stochastic P
systems and evolve circuits matching specific phenotypes.11,12

■ MODEL CHECKING
Model checking is an algorithmic technique that formally
demonstrates the correctness of a system by means of strategic
and exhaustive state space investigation. The technique is based
on building a mathematical model of the system in question.
The properties to be verified are expressed in specific logical
expressions, called temporal logic formulas, and then checked
against the model.

Model checking tools allow analyzing various temporal logic
properties in an automatic way. The method has been
extensively used in the verification of various systems, for
example, concurrent13 and distributed systems,14 multiagent
systems,15 pervasive systems,16 and swarm robotics.17 Recently,
it has been also applied to the analysis of various biological
systems, such as ERK/MAPK pathway,4 FGF signaling
pathway,18 cell cycle in eukaryotes,19 EGFR pathway,20 T-cell
receptor signaling pathway,21 cell cycle control,22 diabetes-
cancer signaling network,23 and genetic Boolean gates.24,25

Two types of verification approaches are utilized in this
paper, a qualitative analysis and a quantitative one.4 In the
former, all the possible behavior pathways are considered and
the presence or absence of different species, in certain
conditions, is detected or certain sequences of events are
verified. In the latter, the appearance of certain amounts of
species is checked in accordance with certain conditions.
Figure 1 shows the taxonomy of the model checkers used in

this paper.

Qualitative Model Checking. A model checker requires
an unambiguous representation of its input model, together
with a set of correctness claims (i.e., properties) generally
expressed as temporal logic formulas. In qualitative model
checking, the correctness result is returned categorically (i.e., a
“yes’ or ’no” answer). In case of “no”, a counter-example is
returned to help users find out why the model does not satisfy
the correctness claim.
In this paper, we explore the use of two qualitative model

checkers: Spin and NuSMV. Spin26 is a widely used model
checking tool and is particularly suited for models of concurrent
and distributed systems, described by means of interleaved
atomic instructions. It features a high level modeling language,
called Promela, which specializes in concise descriptions of
concurrent processes and interprocess communication. A
practical and convenient aspect of the language is the use of
discrete primitive data types and custom data types similar to
the those in C, allowing fine grain model details or low level
implementation features to be directly expressed as part of the
model. Spin provides complete support for Linear-time
Temporal Logic (LTL) and its on the f ly verification procedure
which avoids the necessity to generate the global state space
prior to the search for satisfiability.
NuSMV27 is another popular model checking tool, designed

to verify synchronous and asynchronous systems. NuSMV’s
high-level modeling language is based on Finite State Machines
(FSM) and allows the description of systems in a modular and
hierarchical manner. NuSMV supports the analysis of
specification expressed in Linear-time Temporal Logic (LTL)

Figure 1. Taxonomy of the model checking tools discussed in the
paper.
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and Computation Tree Logic (CTL). NuSMV employs symbolic
methods, allowing a compact representation of the state space
to increase the efficiency and performance. The tool also
permits conducting simulation experiments over the provided
FSM model by generating traces either interactively or
randomly.
Quantitative Model Checking. As described above,

qualitative model checkers can only provide categorical
information, that is, a “yes’ or ‘no” answer. However, for
most systems, especially synthetic biology models, we want to
know more about the quantitative nature of the system
concentration of certain molecular species, temporal and spatial
relationships involving such values, dependencies between
them.
Quantitative analysis provides us more precise and valuable

information about the system dynamics. Probabilistic model
checking augments classical model checking with numerical
analysis techniques to infer quantitative information about
system properties, such as “the likelihood that a protein will be
synthesized”. The numerical characteristic of quantitative
properties allows us to observe any trends or abnormalities in
the system behavior.
In this paper, we will use Prism and MC2 as quantitative

model checkers. Prism28 is the mostly widely used probabilistic
model checker. The tool supports several models, such as
discrete time Markov chains (DTMCs), Markov decision
processes (MDPs), and continuous time Markov chains
(CTMCs). The tool accepts system models in a dedicated
state-based high-level language. The Prism language is mainly
composed of a set of state (and global) variables, commands,
and modules. Each module represents a part of the system.
Modules interact with each other and they collectively define
the overall system behavior.
As for probabilistic properties, Prism supports PCTL29 (a

probabilistic extension of CTL) and Continuous Stochastic
Logic (CSL30). Both languages employ special operators to
express quantitative information. As well as numerical methods,
Prism employs symbolic methods to improve the model
checking efficiency.
Despite its usefulness in system analysis, model checking has

a major drawback: scalability. Since model checking is
essentially an exhaustive state space search, it cannot cope
with very large state spaces. In another words, the model size
has a big impact on the feasibility of the approach.
To overcome this issue, an alternative model checking

approach, statistical model checking, has been proposed.31 Unlike
standard model checking approach, statistical model checking
does not require numerical and symbolic techniques. The idea

is that a number of simulation traces are generated, and the
correctness is approximated using statistical methods (e.g.,
Monte Carlo). This implies that we cannot obtain the exact
verification results, but the accuracy can only be calculated to a
specified degree of conf idence, based on the number of
independent simulation runs. Although the accuracy is not as
precise as the numerical approach, the performance of the
model checking process is immensely improved.
As well as (numerical and symbolic) probabilistic model

checking, Prism also supports statistical model checking using
its discrete event simulator. However, the statistical version of the
tool allows only a restricted set of property types to be model
checked. For example, we cannot model check steady-state
properties.
MC232 is another statistical model checker that allows a

richer set of properties to be model checked. As well as the full
formula set of probabilistic temporal logic, we can also express
properties regarding the quantities such as maximum/minimum
values of a species and decrease/increase of concentrations. To
carry out statistical model checking using MC2, we can reuse
previous simulation results, or can generate a larger set of
simulation traces to achieve higher confidence in the model
checking results.
Both Prism and MC2 are integrated to the Ibw platform,

which constructs the necessary model checking inputs
automatically. However, NuSMV and Spin are not integrated
at the moment. In addition to a formal representation of
models, model checking tools also require system properties to
be verified in a logical formal syntax. Ibw also features a natural
language query tool with a GUI which allows formal properties
expressed in natural language using some predefined patterns.7

■ BIOLOGICAL MODELS
In this section, we will describe two biological models to be
analyzed using formal verification. We have chosen two well-
known cases, one derived from systems biology (quorum
sensing in P. aeruginosas) and one derived from synthetic
biology (pulse generator). We do this so we can focus on our
analysis methods rather than in the intricacies of a putative new
biological system.

Quorum Sensing. Our first model is a well-known example
in systems biology, quorum sensing. Quorum sensing (QS) is a
communication mechanism of bacteria, working based on some
signaling molecules. Once the QS process is activated, the
concentration of the signaling molecule is an indicator of the
number of cells in the colony.33 QS has been designed and
studied in numerous papers. Here, we will focus on the
construct designed by Saeidi et al.34 The authors designed a

Figure 2. Genetic parts and design of the quorum sensing model (The figure is reproduced with permission from ref 34. Copyright 2013, Elsevier.).
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quorum sensing device that can sense the pathogenic
Pseudomonas aeruginosa bacteria, and upon detection, it
illuminates green fluorescent protein (GFP).
Figure 2 illustrates the quorum sensing device and its

corresponding design. The system can be briefly described as
follows:34

“The TetR promoter (pTetR), which is constitutively on,
produces a transcriptional factor (LasR) that binds to AHL
(3OC12HSL). The LuxR promoter (pLuxR), to which LasR-
AHL activator complex binds, serves as the inducible promoter
in our sensing system. The formation of the LasR-AHL
complex, which binds to the LuxR promoter, leads to the
production of GFP as the reporter protein.”
To analyze different aspects of the quorum sensing system,

we consider two variations of the model: a rule-based stochastic
model and nondeterministic model.
Stochastic Model. The stochastic model comprises a set of

rules that govern the kinetic and stochastic behavior of the
system. The reaction rules and the corresponding kinetic rate
contents are provided in Table 1.

In Table 2, the kinetic constant k is dynamically calculated at
each step according to the following formula:34
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where the entity [a] denotes the concentration of the species a.
The reaction constants used in the formula above is given in
Table 2.

Nondeterministic Model. The nondeterministic model is
directly derived from the stochastic model by taking out the
kinetic constants. This model describes all the interactions
provided by its stochastic counterpart, but in a rather symbolic
and qualitative way than showing more precise quantitative
aspects of the system. All the possible pathways of the system
are captured by the model, but as the precise concentration of
certain molecular species is not a key issue for these models, in
certain circumstances the multisets are bounded, even restricted
to one or two elements, describing their presence rather than
their molecular concentration.

Pulse-Generator Model. The pulse generator is a colony of
synthetically programmed bacteria, studied in Basu et al.35 The
system is composed of two sets of sender and pulsing cells (see
Figure 3). The sender cells produce a signaling molecule,
propagated through the pulsing cells. The pulsing cells express
the green fluorescent protein (GFP) triggered by the signaling
molecules, and propagate the excess signaling molecules to the
neighboring cells.
Sender cells synthesize the signalling molecule 3OC6-HSL

(AHL) through the enzyme LuxI, expressed under the
constitutive expression of the promoter PLtetO1. Pulsing
cells express GFP under the regulation of the PluxPR promoter,
activated by the LuxR_3OC6_2 complex. The LuxR protein is
expressed under the control of the PluxL promoter. The GFP
production is repressed by the transcription factor CI, codified
under the regulation of the promoter PluxR that is activated
upon binding of the transcription factor LuxR_3OC6_2.
In a colony, sender bacteria strains are located at one end of a

specific spatial distribution (e.g., lattice), and pulsing cells are
located to the rest of the distribution (lattice).

Stochastic Model. The stochastic behavior of the pulse
generator system is modeled using a set of stochastic P system
models. The language permits modelling a two-dimensional
geometric lattice where “a population of stochastic P systems
could be placed and over which molecules could be
translocated”.7

Each sender cell contains 11 reaction rules, which model the
production of the signaling molecule 3OC6-HSL. Each pulsing
cells contains 38 reaction rules, which models the production of
the pulse of GFP protein as a response to the signal 3OC6-
HSL. The geometry of a bacterial colony containing both cell
types is represented by a rectangular lattice. The overall model
of the pulse generator system is captured by “distributing
cellular clones of the sender cell strain at one end of the lattice
and cellular clones of the pulsing cell strain over the rest of the
points”.7

Nondeterministic Model. As for the previous model, the
kinetic constants are removed. In the case of a stochastic P
systems (with spacial information), the individual component
models are compacted such that an entire chain of reactions is
replaced by one or a few simple rules. Consequently, the overall
number of interactions is reduced, and all the species that do
not appear in the new set of rules are removed from the model.
These changes are made in the nondeterministic models as
these are used for qualitative analyses where the concentration
of certain molecules is not significant or chain of reaction
already analyzed can be replaced by some abstractions
mimicking their behavior through simpler rewriting mecha-
nisms.

Table 1. Reaction Rules for the QS Model

rule stochastic constant

r1a Ptet_LasR →
k a1 mRNA_LasR k1a = 3.734 min−1

r1b mRNA_LasR →
k b1 Ptet_LasR k1b = 3.48 × 10−1 min−1

r2 mRNA_LasR →
k2 LasR k2 = 35.7 min−1

r3 LasR →
k3 k3 = 6.96 × 10−2 min−1

r4a LasR + AHL ⎯→⎯
k a4 LasR-AHL k4a = 9.6 × 106 min−1

r4b LasR-AHL ⎯→⎯
k b4 LasR + AHL k4b = 0.0 min−1

r5a LasR-AHL + pLuxR ⎯→⎯
k a5 A_pluxRR k5a = 1.96 × 106 min−1

r5b A_pluxRR ⎯→⎯
k b5 LasR-AHL + pLuxR k5b = 10.2 min−1

r6 AHL →
k6 k6 = 2.832 × 10−4 min−1

r7 A_pluxRR →
k
GFP k

Table 2. Kinetic Constants for the Rule r7

constant value

k7 4.051 × 10−3

k8 9.567 × 10−3

k9 9.742 × 10−8

k10 6.5 × 10−16

k11 1.0 × 10−14 min−1

k12 2.4 × 10−7 min−1

n1 2.0
n2 2.0
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■ EXPERIMENTS
In this section, we will discuss formal qualitative analysis of one
systems and one synthetic biology construct using the model
checkers NuSMV (for the quorum sensing model) and Spin
(for the pulse generator model) to capture qualitative aspects of
the system, and quantitative analysis using the probabilistic
model checkers Prism and MC2 to capture stochastic and
kinetic dynamics.
Before discussing the experiments carried out, we present in

Table 3 the main symbols used in temporal logic formulas.

Generally speaking, a property is constructed as follows: branch
quantifier + temporal operator + expression (e.g., AG (GFP ≥
thr)).
In probabilistic temporal logics, we represent probabilistic

properties with formulas of the type P⋈ r[φ], which informally
means that the probability of taking a branch satisfying φ meets
⋈ r (where ⋈ ∈ {<, >, =, ≤, ≥} and r ∈ [0,1]). In addition to
the probabilistic formulas, the Prism model checker also
permits expressing reward-based formulas to calculate expected
values. For example, the reward formula R{“X”}=?[I = t]
calculates the expected value of X at the time instant t.
We note that the complete model and experimental results of

the pulse generator can be downloaded from ref 36. These
include LPP model files, simulation parameters, simulation
results, Prism model file, model checking parameters, a list of
Prism properties and model checking experimental results. The
experimental results and source files of the quorum sensing
model can also be accessed at ref 37.
Quorum Sensing Model. The formal analysis of the

quorum sensing system concerns a single sensing device. The
qualitative model checking experiments refer to relationships
between species occurring on various reaction pathways, and
the quantitative model checking experiments refer to more
complex stochastic behaviour of the system.
Qualitative Model Checking. In accordance with the genetic

parts and the design of the quorum sensing system presented in
Figure 2, the model consists of a chain of reactions. For
instance, one can verify the appearance of GFP later in the

system, but not at the beginning, or the fact that the protein
LasR binds to the signal molecule AHL (3OC12HSL) and the
obtained complex, which binds to the LuxR promoter, will
eventually lead to the production of the GFP reporter protein.
These are expressed as follows by using formulas expressed in
LTL or CTL for the model checker chosen in this respect.
Property 1. There are pathways in the system that eventually

lead to producing GFP.

>EF (GFP 0)

This property, expressed in CTL and verified in NuSMV, is
true, as expected.
We now show how one can check that a certain sequence of

events must or might appear in a chain of reactions. This is
illustrated by the relationship between the formation of the
complex LasR_AHL and the production of the GFP, by using a
CTL formula in NuSMV.
Property 2. Always the Lasr_AHL complex formation might

eventually lead to the production of GFP.

_ > ⇒ >AG (LasR AHL 0 EF GFP 0)

The result of this property is true and shows that the
production of GFP is always preceded by the Lasr_AHL
complex formation.

Quantitative Model Checking. Here we report the results of
the quantitative analysis of the quorum sensing model. The
experiments have been carried out using Prism and MC2.

Prism Results.We first start with the Prism results. Note that
for computational reasons (as discussed), we have performed
our experiments using the statistical (approximate) model
checking module of Prism, based on the discrete event
simulator of the tool.
In the following, we give both informal and formal

representations of the properties checked:
Property 1. What is the probability that the system produces

GFP if there is not any 3OC12HSL?
The formal translation of this property in the Prism’s

property language CSL is given as follows:

= >=P [3OC12HSL 0 U GFP 0]?

The result of this property is 0.0, which ensures that the system
will not produce GFP in the absence of Pseudomonas.
Property 2. What is the probability that the production of

GFP starts in t minutes (if 3OC12HSL is available initially)?
The property is formally translated as follows:

>=
≤P [F GFP 0]t

?

Figure 3. Sender and pulsing cells of the pulse generator system (The figure is reproduced from ref 7. Copyright 2014, Springer.).

Table 3. Main Symbols in Temporal Logic Formulas

temporal operator informal meaning

F p p holds in some future state
G p p always holds in all future states
p U q p holds until q holds

Brach quantifier informal meaning

E p for some paths (i.e., executions)
A p for all paths (i.e., executions)
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The results obtained for t = 100 and t = 1000 are 0.13 and 0.76,

respectively. As expected, it takes some time the system to fuse

GFP after sensing the bacteria.
Property 3. What is the expected A_PluxR at the time

instant t?
The property is formally expressed in CSL:

_ == tR{“A PluxR”} [I ]?

The results based on different initial values of 3OC12HSL are
illustrated in Figure 4a. The figure shows that the concentration
of the active complex A_PluxR, producing GFP, depends on
the signaling molecule 3OC12HSL. The results are inline with
the original design of the device.34

Property 4.What is the ratio of GFP to its maximum value at
the time instant t?
The property is translated as

_ == tR{“GFP/GFP MAX”} [I ]?

Figure 4. Expected amount of species in the quorum sensing model based on different initial amounts of 3OC12HSL.

Figure 5. Expected amount of species in the modified model based on different initial amounts of 3OC12HSL.

Figure 6. Expected amount of 3OC12HSL and Ptet_LasR for both models.
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The results are presented in Figure 4a, where GFP_MAX
denotes the maximum concentration that GFP can reach. The
results show that no matter the initial concentration of
3OC12HSL, GFP can reach its maximum level at around
3000 min.
We can conclude from Figure 4 that the QS device emits

GFP in its highest level, even if the 3OC12HSL’s concentration
reduces to 0 in 25 min (see Figure 6a). Naturally, a sensing
device should stop fusing GFP when there is not any signaling
molecule left (i.e., no bacteria are available). To implement this
effect, we have modified the QS device slightly by adding two
degradation rules for GFP and A_PluxR. Based on these
changes, we have reanalyzed the properties 3 and 4. As shown
in Figure 5, the concentration levels of the both molecules
starts decreasing after all 3OC12HSL molecules are consumed.
Similar to Properties 3 and 4, we have also analyzed the

expected number of 3OC12HSL and Ptet_LasR. As expected,
for both original and modified models, we have obtained the
same results (see Figure 6).
MC2 Results. As discussed previously, the approximate

model checking module of Prism allows only a restricted set of
property types to be model checked. MC2 permits expressing a
richer set of properties. As well as the full formula set of
probabilistic temporal logic, we can also express properties
regarding quantitative aspects such as maximum/minimum
values of a species and decrease/increase of concentrations.
Below, we provide some properties analyzed (against the

original system) using MC2 and present the corresponding
model checking results. Note that Prism’s statistical model
checker does not support these properties. Here, we assume
that the signaling molecule is initially available.
Property 1. Probability that the GFP production is activated

whenever the signaling molecule becomes available.
The formal translation of Property 1:

> ⇒ >=P [G ([3OC12HSL] 0 F [GFP] 0)]?

The result of this property is 1.0, which ensures that the system
will produce GFP whenever Pseudomonas is sensed.
Property 2. Probability that the GFP concentration

eventually increases.
The formal translation of Property 2:

>=P [F (d[GFP] 0)]?

The result of this property is 1.0, which ensures that the system
responds to 3OC12HSL.
Property 3. Probability that the GFP concentration increases

within 1000 min.
The formal translation of Property 3:

> ∧ ≤=P [F (d[GFP] 0 time 1000)]?

The result of this property is 0.84, implying it is very likely that
the system will produce GFP within 1000 min of sensing
3OC12HSL.
Property 4. Probability that the maximum GFP concen-

tration is reached within 1000 min.
The formal translation of Property 4:

= ∧ ≤=P [F [GFP] max[GFP] time 1000]?

The result of this property is 0.80, implying it is likely that the
system will respond to 3OC12HSL very strongly within 1000
min.
Property 5. Probability that GFP is fused in the steady-state.

The formal translation of Property 5:

>=P [F G [GFP] 0]?

The result of this property is 1.0.
We can obtain similar results for the modified model except

Property 5, for which we have obtained 0.0. These results show
that in the original model the GFP production is activated as a
response to the availability of the signaling molecule and it
never stops. However, in the modified model, the GFP
production is stopped after the signaling molecules are totally
consumed.

Pulse-Generator Model. This is a model of a multicellular
system showing how the verification method discussed so far
for a cell system can be extended to more complex cases, by
avoiding the well-known state explosion problem that all the
model checking approaches face. First, for the qualitative
analysis we are focusing on two aspects: the verification of
individual components of the system and the verification of the
entire system, or a significant fragment of it, by using adequate
modeling abstractions. Second, the quantitative approach will
show how statistical model checking can be used to verify
properties referring to molecules from different parts of the
system.

Qualitative Model Checking. We start with verifying
properties similar to those presented in the section on
qualitative model checking for the quorum sensing system.
Property 1. There is no pathway in the sending cell that

eventually leads to the production of signal3OC6 in less than k
steps.

< ⇒ =kG (step signal3OC6 0)

The property, expressed in LTL, has been verified in Spin,
which returned true for k = 5. This type of properties are useful
to acquire information about the reaction network of a
particular system. We do not repeat the experiments here,
but one can show, similar to the quorum sensing case, the
presence of the molecules in different sequences of events.
For the multicellular case of the lattice system, we check

whether the signal molecule properly propagates through the
system. Running such experiments, even for simple lattices of 2
by 2, is very prohibitive in both time and memory requested.
This shows that one needs a different representation for the
model used. One solution to overcome this issue is to compact
some long chains of reactions into simpler and shorter ones
where only the molecules directly involved in verification are
kept. As we aim to check the propagation of the signal
molecules through the lattice, we use reduced models for the
two cell types involved. The sender cell has now 5 rules and the
pulsing cell has 7 rules. As the sending cells produce the AHL
(signal3OC6) signal molecule, the propagation of the AHL
molecule is verified only for the pulsing cells. For the
experiments in this section the lattice will be reduced to a 2
by 4 size with two sender cells in the first row and pulsing cells
in the rest.
Property 2. The presence of the GFP at row n ∈ {2,3,4} is

preceded by the presence of signal3OC6 in the preceding row,
n′ = n − 1, or neighbor cell.
The property is translated as
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_ _ > ⇒

¬ _ ′ = ∧ _ =

_ _ >

(F GFP pulsing n 0)

((signal3OC6 n 0 signal3OC6 n 0)U

GFP pulsing n 0)

We have verified this property, expressed in LTL, using Spin,
which returned true.
Quantitative Model Checking. We now present some

numerical results based on quantitative analysis, performed
using Prism. The results presented in this section are
summarized from our earlier work.7

In the following set of experiments, we consider a lattice of
size 2 by 6. The sender cells are placed to the first 2 rows and
columns, that is, the initial 2 by 2 section of the lattice. The
pulsing cells are distributed to the remainder of the lattice.
Property 1. What is the probability that GFP concentration

at row n ∈ {3,4,5,6} exceeds 100 at the time instant T?
The formal translation of this property in CSL is given as

follows:

_ _ ≥=P [true U GFP pulsing n 100]T T
?

[ , ]

The verification results are presented as a 2D plot in Figure 7a.
Property 2. What is the probability that GFP concentration

at row n ∈ {3,4,5} stays greater than GFP concentration at row
6 until the time instant T where GFP concentration at row 6
exceeds GFP concentration at row n?
The property is formally translated to CSL as follows:

_ _ ≥ _ _ _ _

> _ _
=P [GFP pulsing n GFP pulsing 6 U GFP pulsing 6

GFP pulsing n]

T T
?

[ , ]

The verification results are illustrated in Figure 7b.
Property 3. What is the expected GFP concentration at row

n ∈ {3,4,5,6} at the time instant T?
The property is formally expressed as

_ _ == TR{“GFP pulsing n”} [I ]?

The results are illustrated in Figure 7c.
Property 4. What is the expected signal3OC6 concentration

at row n ∈ {3,4,5,6} at the time instant T?
The property is translated as

_ _ == TR{“signal3OC6 pulsing n”} [I ]?

The corresponding verification results are shown in Figure 7d.
Based on the verification results, we can infer some

important information regarding the system dynamics and
kinetic behavior. Figure 7 clearly shows that the GFP
expression propagates in this bacterial colony. In particular,
parts a and c of Figure 7 illustrate the propagation of a wave of
gene expression. It can be observed from these figures that the
GFP concentration first increases in the rows closer to the
sender cells, and then, it gradually reduces to zero. The rows far
from the sender cells show a similar behavior with some delay.
This delay is proportional to the distance of the row to the
sender cells. Finally, Figure 7d shows that the pulsing cells
which are distant from the sender cells are less likely to produce
a pulse.

■ CONCLUSION AND FUTURE WORK
In this paper, we have shown how formal verification is utilized
in systems and synthetic biology through qualitative vs
quantitative analysis. Here, we have chosen two well-known
case studies: quorum sensing in P. aeruginosas and the pulse
generator. We have constructed the corresponding stochastic P
system models using the Ibw software suit.
We have performed formal qualitative analysis of one systems

and one synthetic biology construct using the model checkers
NuSMV (for the quorum sensing model) and Spin (for the
pulse generator model) to capture qualitative aspects of the
system, and quantitative analysis using the probabilistic model

Figure 7. Quantitative analysis using probabilistic model checking (Taken from7. Copyright 2014, Springer.). Row n denotes the nth row of the
pulsing cells in the lattice, and T denotes time.
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checkers Prism and MC2 to capture stochastic and kinetic
dynamics. Based on the verification results, we have inferred
some important information regarding the system dynamics
and kinetic behavior as well as the reaction network and system
topology.
In our future work, we aim to broaden the spectrum of the

current model checkers used in formally verifying synthetic
biology systems and to identify in a more rigorous way a
suitable model checker that fits the characteristics of a system
and the properties that are verified in this case.
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